Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.981
Filtrar
1.
Behav Pharmacol ; 35(2-3): 79-91, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38451022

RESUMO

Remarkable performance improvements occur at the end of the third postnatal week in rodents tested in various tasks that require navigation according to spatial context. While alterations in hippocampal function at least partially subserve this cognitive advancement, physiological explanations remain incomplete. Previously, we discovered that developmental modifications to hippocampal glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in juvenile rats was related to more mature spontaneous alternation behavior in a symmetrical Y-maze. Moreover, a positive allosteric modulator of AMPA receptors enabled immature rats to alternate at rates seen in older animals, suggesting an excitatory synaptic limitation to hippocampal maturation. We then validated the Barnes maze for juvenile rats in order to test the effects of positive AMPA receptor modulation on a goal-directed spatial memory task. Here we report the effects of the AMPA receptor modulator, CX614, on spatial learning and memory in the Barnes maze. Similar to our prior report, animals just over 3 weeks of age display substantial improvements in learning and memory performance parameters compared to animals just under 3 weeks of age. A moderate dose of CX614 enabled immature animals to move more directly to the goal location, but only after 1 day of training. This performance improvement was observed on the second day of training with drug delivery or during a memory probe trial performed without drug delivery after the second day of training. Higher doses created more search errors, especially in more mature animals. Overall, CX614 provided modest performance benefits for immature rats in a goal-directed spatial memory task.


Assuntos
Receptores de AMPA , Aprendizagem Espacial , Ratos , Animais , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia , Memória Espacial , Cognição
2.
Environ Toxicol Pharmacol ; 107: 104429, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38527596

RESUMO

Pesticides are contaminants run-offs from agricultural areas with a global concern due to their toxicity for non-target organisms. The Brazilian Health Surveillance Agency reported about 63% of the food contain pesticide residues. Glyphosate is a herbicide used worldwide but its toxicity is not a consensus among specialists around the world. AMPA (aminomethylphosphonic acid) is a glyphosate metabolite that can be more toxic than the parental molecule. Melanoma murine B16-F1 cells were exposed to glyphosate and AMPA to investigate the cell profile and possible induction to a more malignant phenotype. Glyphosate modulated the multi-drug resistance mechanisms by ABCB5 gene expression, decreasing cell attachment, increasing cell migration and inducing extracellular vesicles production, and the cells exposed to AMPA revealed potential damages to DNA. The present study observed that AMPA exhibits high cytotoxicity, which suggests a potential impact on non-tumor cells, which are, in general, more susceptible to chemical exposure. Conversely, glyphosate favored a more metastatic and chemoresistant behavior in cancer cells, highlighting the importance of additional research in this area.


Assuntos
Herbicidas , Melanoma , Organofosfonatos , Camundongos , Animais , 60658 , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Glicina , Herbicidas/toxicidade
3.
Arch Biochem Biophys ; 754: 109951, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452968

RESUMO

Glutamate excitotoxicity accompanies numerous brain pathologies, including traumatic brain injury, ischemic stroke, and epilepsy. Disturbances of the ion homeostasis, mitochondria dysfunction, and further cell death are considered the main detrimental consequences of excitotoxicity. It is well known that neurons demonstrate different vulnerability to pathological exposures. In this regard, neurons containing calcium-permeable AMPA receptors (CP-AMPARs) may show higher susceptibility to excitotoxicity due to an additional pathway of Ca2+ influx. Here, we demonstrate that neurons containing CP-AMPARs are characterized by the higher amplitude of the glutamate-induced elevation of intracellular Ca2+ concentration ([Ca2+]i) and slower restoration of [Ca2+]i level compared to non-CP-AMPA neurons. Moreover, we have found that NASPM, an antagonist of CP-AMPARs, significantly decreases the amplitude of the [Ca2+]i elevation induced by glutamate or selective AMPARs agonist, 5-fluorowillardiine. In contrast, the antagonists of NMDARs or KARs affect insignificantly. We have also described some peculiarities of Na+, K+, and H+ intracellular dynamics in neurons containing CP-AMPARs. In particular, the amplitude of [Na+]i elevation was lower compared to non-CP-AMPA neurons, whereas the amplitude of [K+]i decrease was higher. We have shown the significant inverse correlation between [K+]i and [Ca2+]i and between intracellular pH and [Na+]i in CP-AMPARs-containing and non-CP-AMPA neurons upon glutamate excitotoxicity. Our data indicate that CP-AMPARs-mediated Ca2+ influx and slow removal of Ca2+ from the cytosol may underlie the vulnerability of the CP-AMPARs-containing neurons to glutamate excitotoxicity. Further studies of the mechanisms mediating the disturbances in ion homeostasis are crucial for developing new approaches for protecting these neurons at brain pathologies.


Assuntos
Cálcio , Receptores de AMPA , Receptores de AMPA/fisiologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , Cálcio/metabolismo , Neurônios/metabolismo , Ácido Glutâmico/metabolismo , Homeostase
4.
Chem Biol Drug Des ; 103(3): e14498, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38453241

RESUMO

The research involves the synthesis of a series of new pyridine analogs 5(i-x) and their evaluation for anti-epileptic potential using in silico and in vivo models. Synthesis of the compounds was accomplished by using the Vilsmeier-Haack reaction principle. AutoDock 4.2 was used for their in silico screening against AMPA (-amino-3-hydroxy-5-methylisoxazole) receptor (PDB ID:3m3f). For in vivo testing, the maximal electroshock seizure (MES) model was used. The physicochemical, pharmacokinetic, drug-like, and drug-score features of all synthesized compounds were assessed using the online Swiss ADME and Protein Plus software. The in silico results showed that all the synthesized compounds 5(i-x) had 1-3 interactions and affinities ranging from -6.5 to -8.0 kJ/mol with the targeted receptor compared to the binding affinities of the standard drug phenytoin and the original ligand of the target (P99), which were -7.6 and -6.8 kJ/mol, respectively. In vivo study results showed that the compound 5-Carbamoyl-2-formyl-1-[2-(4-nitrophenyl)-2-oxo-ethyl]-pyridinium gave 60% protection against epileptic seizures compared to 59% protection afforded by regular phenytoin. All of them met Lipinski's rule of five and had drug-likeness and drug score values of 0.55 and 0.8, respectively, making them chemically and functionally like phenytoin. According to the findings of the studies, the synthesized derivatives have the potential to be employed as a stepping stone in the development of novel anti-epileptic drugs.


Assuntos
Anticonvulsivantes , Fenitoína , Humanos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/uso terapêutico , Fenitoína/uso terapêutico , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Convulsões/tratamento farmacológico , Convulsões/prevenção & controle , Piridinas/uso terapêutico
5.
Chemosphere ; 353: 141578, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430938

RESUMO

Pesticide contamination and its adverse effects on native freshwater species continue to be a worldwide major concern, mainly in developing countries. Passive biomonitoring of pesticide pollution in shallow lakes may be achieved by the simultaneous use of fish and wetland plants. Thus, the present study aimed to evaluate the occurrence of current-use pesticides in the surface water of a shallow lake of the Austral Pampas region (Buenos Aires Province, Argentina) surrounded by intensive agricultural activities and its relationship with a battery of biomarkers, including oxidative stress and genotoxicity, in two native species, the fish Oligosarcus jenynsii and the macrophyte Bidens laevis. A total of 26 pesticide residues were analyzed, and the main ones detected were glyphosate and its metabolite aminomethylphosphonic acid (AMPA), chlorpyrifos, and imidacloprid. In O. jenynsii, hydrogen peroxide (H2O2) content in the liver increased with chlorpyrifos occurrence, while malondialdehyde (MDA) levels in the brain and liver increased with the presence of both chlorpyrifos and glyphosate. In B. laevis, H2O2 and MDA levels in leaves and roots increased with AMPA occurrence. Also, leaf H2O2 contents and root MDA levels increased with chlorpyrifos concentration. In contrast, catalase and peroxidase activities in roots decreased with AMPA and chlorpyrifos occurrence. In both species, mainly H2O2 and MDA levels demonstrated their sensitivity to be used as biomarkers in the biomonitoring of current-use pesticide pollution in shallow lakes. Their use may provide information to plan strategies for environmental conservation by government institutions or decision-makers, and to assess the biota health status.


Assuntos
Clorpirifos , Praguicidas , Poluentes Químicos da Água , Animais , Praguicidas/análise , Lagos , Clorpirifos/toxicidade , Monitoramento Biológico , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/análise , Argentina , Peróxido de Hidrogênio , Monitoramento Ambiental , 60658 , Estresse Oxidativo , Peixes/metabolismo , Biomarcadores/metabolismo , Poluentes Químicos da Água/análise
6.
eNeuro ; 11(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519128

RESUMO

As the global elderly population grows, age-related cognitive decline is becoming an increasingly significant healthcare issue, often leading to various neuropsychiatric disorders. Among the many molecular players involved in memory, AMPA-type glutamate receptors are known to regulate learning and memory, but how their dynamics change with age and affect memory decline is not well understood. Here, we examined the in vivo properties of the AMPA-type glutamate receptor GLR-1 in the AVA interneuron of the Caenorhabditis elegans nervous system during physiological aging. We found that both total and membrane-bound GLR-1 receptor levels decrease with age in wild-type worms, regardless of their location along the axon. Using fluorescence recovery after photobleaching, we also demonstrated that a reduction in GLR-1 abundance correlates with decreased local, synaptic GLR-1 receptor dynamics. Importantly, we found that reduced GLR-1 levels strongly correlate with the age-related decline in short-term associative memory. Genetic manipulation of GLR-1 stability, by either deleting msi-1 or expressing a ubiquitination-defective GLR-1 (4KR) variant, prevented this age-related reduction in receptor abundance and improved the short-term memory performance in older animals, which reached performance levels similar to those of young animals. Overall, our data indicate that AMPA-type glutamate receptor abundance and dynamics are key factors in maintaining memory function and that changes in these parameters are linked to age-dependent short-term memory decline.


Assuntos
Proteínas de Caenorhabditis elegans , Animais , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Memória de Curto Prazo , Mutação , Receptores de AMPA , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo
7.
Sci Total Environ ; 922: 171290, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38431163

RESUMO

Municipal biosolids (MBS) are suggested to be abundant, sustainable, inexpensive fertilisers, rich in phosphorus and nitrogen. However, MBS can also contain glyphosate and phosphonates that can degrade to AMPA. Glyphosate-based herbicides (GBH) are used in field crops all over the world. Most glyphosate generally degrades within a few weeks, mainly as aminomethylphosphonic acid (AMPA). AMPA is more persistent than glyphosate, and can accumulate from one crop year to the next. AMPA is phytotoxic even to glyphosate-resistant crops. The aims of this study were to assess whether MBS applications constitute: 1) an additional source of glyphosate and AMPA to agricultural soils with respect to GBH, 2) a significant source of trace metals, and 3) a partial replacement of mineral fertilisation while maintaining similar yields. To this end, four experimental agricultural sites were selected in Québec (Canada). Soil samples (0-20 cm) were collected to estimate the as yet unmeasured contribution of MBS application to glyphosate and AMPA inputs in agricultural soils. MBS applied in 2021 and 2022 had mean concentrations of 0.69 ± 0.53 µg glyphosate/dry g and 6.26 ± 1.93 µg AMPA/dry g. Despite the presence of glyphosate and AMPA in MBS, monitoring of these two compounds in corn and soybean crops over two years showed no significant difference between plots treated with and without MBS applications. For the same site, yields measured at harvest were similar between treatments. MBS application could thus represent a partial alternative to mineral fertilisers for field crops, while limiting the economic and environmental costs associated with their incineration and landfilling. It is also an economic advantage for agricultural producers given the possibility of using fewer mineral fertilisers and therefore reducing the environmental impact of their use.


Assuntos
Herbicidas , Organofosfonatos , Poluentes do Solo , 60658 , Solo , Biossólidos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/análise , Glicina , Quebeque , Fertilizantes , Monitoramento Ambiental , Herbicidas/análise , Minerais , Fertilização , Poluentes do Solo/análise
8.
Anal Methods ; 16(14): 2025-2032, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38516858

RESUMO

Residues of glyphosate (GlyP) and its major degradation product, aminomethylphosphonic acid (AMPA), widely exist in the water system and plant products and thus are also present in the bodies of animals and humans. Although no solid evidence has been obtained, the concern about the cancer risk of GlyP is persistent. The measurement of GlyP and AMPA in trace levels is often needed but lacks readily available analytical approaches with detection sensitivity, accuracy and speed. This study aims to develop a simple and robust technique for the sensitive detection of GlyP and AMPA residues in a surface water system with flow-gated capillary electrophoresis (CE). Experimentally, water samples were first fluorogenically derivatized with 4-fluoro-7-nitrobenzofurazan (NBD-F) in a low-conductivity buffer at room temperature, and the mixture was injected and concentrated in the capillary based on field-amplified sample injection (FASI) coupled with electrokinetic supercharging (EKS). This scheme included a step of sample buffer injection upon electroosmotic pumping, where negatively charged analytes were electrophoretically rejected, followed by automatic voltage reversal for FASI-EKS. The detection sensitivity was improved by 296, 444, and 861 times for glufosinate (GluF), AMPA, and GlyP, respectively. The proposed method was validated in terms of accuracy, precision, limits of detection (LODs), and linearity. The LODs were estimated to be 50.0 pM, 5.0 pM, and 10.0 pM for GluF, AMPA, and GlyP, respectively. Its application was demonstrated by measuring GluF and AMPA in water samples collected from a local water system. This study provides an effective approach for the online preconcentration of negatively charged analytes, thus enabling the sensitive detection of herbicide residues in water samples. The method can also be applied to analyze other samples, including biological fluids and plant products, upon appropriate sample preparation such as solid phase extraction of analytes.


Assuntos
Herbicidas , Organofosfonatos , Humanos , Herbicidas/análise , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , 60658 , Eletroforese Capilar/métodos , Água/química
9.
J Neurophysiol ; 131(4): 626-637, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38380827

RESUMO

Serotonergic neurons in the dorsal raphe nucleus (DRN) play important roles early in postnatal development in the maturation and modulation of higher-order emotional, sensory, and cognitive circuitry. The pivotal functions of these cells in brain development make them a critical substrate by which early experience can be wired into the brain. In this study, we investigated the maturation of synapses onto dorsal raphe serotonergic neurons in typically developing male and female mice using whole cell patch-clamp recordings in ex vivo brain slices. We show that while inhibition of these neurons is relatively stable across development, glutamatergic synapses greatly increase in strength between postnatal day 6 (P6) and P21-23. In contrast to forebrain regions, where the components making up glutamatergic synapses are dynamic across early life, we find that DRN excitatory synapses maintain a very high ratio of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) to N-methyl-d-aspartate (NMDA) receptors and a rectifying component of the AMPA response until adulthood. Overall, these findings reveal that the development of serotonergic neurons is marked by a significant refinement of glutamatergic synapses during the first three postnatal weeks. This suggests this time is a sensitive period of heightened plasticity for the integration of information from upstream brain areas. Genetic and environmental insults during this period could lead to alterations in serotonergic output, impacting both the development of forebrain circuits and lifelong neuromodulatory actions.NEW & NOTEWORTHY Serotonergic neurons are regulators of both the development of and ongoing activity in neuronal circuits controlling affective, cognitive, and sensory processing. Here, we characterize the maturation of extrinsic synaptic inputs onto these cells, showing that the first three postnatal weeks are a period of synaptic refinement and a potential window for experience-dependent plasticity in response to both enrichment and adversity.


Assuntos
Núcleo Dorsal da Rafe , Neurônios Serotoninérgicos , Masculino , Camundongos , Feminino , Animais , Núcleo Dorsal da Rafe/fisiologia , Neurônios Serotoninérgicos/fisiologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Serotonina/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
10.
Phytomedicine ; 126: 155452, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422650

RESUMO

BACKGROUND: Depression is a common and recurrent neuropsychiatric disorder. Recent studies have shown that the N-methyl-d-aspartate (NMDA) receptor (NMDAR) is involved in the pathophysiology of depression. Previous studies have found that Kaji-ichigoside F1 (KF1) has a protective effect against NMDA-induced neurotoxicity. However, the antidepressant mechanism of KF1 has not been confirmed yet. PURPOSE: In the present study, we aimed to evaluate the rapid antidepressant activity of KF1 and explore the underlying mechanism. STUDY DESIGN: First, we explored the effect of KF1 on NMDA-induced hippocampal neurons and the underlying mechanism. Second, depression was induced in C57BL/6 mice via chronic unpredictable mild stress (CUMS), and the immediate and persistent depression-like behavior was evaluated using the forced swimming test (FST) after a single administration of KF1. Third, the contributions of NMDA signaling to the antidepressant effect of KF1 were investigated using pharmacological interventions. Fourth, CUMS mice were treated with KF1 for 21 days, and then their depression-like behaviors and the underlying mechanism were further explored. METHODS: The FST was used to evaluate immediate and persistent depression-like behavior after a single administration of KF1 with or without NMDA pretreatment. The effect of KF1 on depressive-like behavior was investigated in CUMS mice by treating them with KF1 once daily for 21 days through the sucrose preference test, FST, open field test, and tail suspension test. Then, the effects of KF1 on the morphology and molecular and functional phenotypes of primary neuronal cells and hippocampus of mice were investigated by hematoxylin-eosin staining, Nissl staining, propidium iodide staining, TUNEL staining, Ca2+ imaging, JC-1 staining, ELISA, immunofluorescence analysis, RT-PCR, and Western blot. RESULTS: KF1 could effectively improve cellular viability, reduce apoptosis, inhibit the release of LDH and Ca2+, and increase the mitochondrial membrane potential and the number of dendritic spines numbers in hippocampal neurons. Moreover, behavioral tests showed that KF1 exerted acute and sustained antidepressant-like effects by reducing Glu-levels and ameliorating neuronal damage in the hippocampus. Additionally, in vivo and in vitro experiments revealed that PSD95, Syn1, α-amino-3­hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and brain-derived neurotrophic factor (BDNF) were upregulated at the protein level, and BDNF and AMPA were upregulated at the mRNA level. NR1 and NR2A showed the opposite trend. CONCLUSION: These results confirm that KF1 exerts rapid antidepressant effects mainly by activating the AMPA-BDNF-mTOR pathway and inhibiting the NMDAR-CaMKIIα pathway. This study serves as a new reference for discovering rapid antidepressants.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Depressão , Camundongos , Animais , Depressão/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , N-Metilaspartato/metabolismo , N-Metilaspartato/farmacologia , Camundongos Endogâmicos C57BL , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Hipocampo , Estresse Psicológico/tratamento farmacológico , Modelos Animais de Doenças
11.
Sci Total Environ ; 918: 170643, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38320697

RESUMO

Glyphosate and nitrogen (N) or (P) phosphorus fertilizers are often applied in combination to agricultural fields. The additional P or N supply to microorganisms might drive glyphosate degradation towards sarcosine/glycine or aminomethylphosphonic acid (AMPA), and consequently determine the speciation of non-extractable residues (NERs): harmless biogenic NERs (bioNERs) or potentially hazardous xenobiotic NERs (xenoNERs). We therefore investigated the effect of P or N-fertilizers on microbial degradation of glyphosate and bioNER formation in an agricultural soil. Four different treatments were incubated at 20 °C for 75 days as follows; I: no fertilizer (2-13C,15N-glyphosate only, control), II: P-fertilizer (superphosphate + 2-13C,15N-glyphosate, effect of P-supply), III: N-fertilizer (ammonium nitrate + 2-13C,15N-glyphosate, effect of N-supply) and IV: 15N-fertilizer (15N-ammonium nitrate + 2-13C-glyphosate, differentiation between microbial assimilations of 15N: 15N-fertilizer versus 15N-glyphosate). We quantified 13C or 15N in mineralization, extractable residues, NERs and in amino acids (AAs). At the end, mineralization (36-41 % of the 13C), extractable 2-13C,15N-glyphosate/2-13C-glyphosate (0.42-0.49 %) & 15N-AMPA (1.2 %), and 13C/15N-NERs (40-43 % of the 13C, 40-50 % of the 15N) were comparable among treatments. Contrastingly, the 15N-NERs from 15N-fertlizer amounted to only 6.6 % of the 15N. Notably, N-fertilizer promoted an incorporation of 13C/15N from 2-13C,15N-glyphosate into AAs and thus the formation of 13C/15N-bioNERs. The 13C/15N-AAs were as follows: 16-21 % (N-fertilizer) > 11-13 % (control) > 7.2-7.3 % (P-fertilizer) of the initially added isotope. 2-13C,15N-glyphosate was degraded via the sarcosine/glycine and AMPA simultaneously in all treatments, regardless of the treatment type. The percentage share of bioNERs within the NERs in the N-fertilized soil was highest (13C: 80-82 %, 15N: 100 %) compared to 53 % (13C & 15N, control) and to only 30 % (13C & 15N, P-fertilizer). We thus concluded simultaneous N & glyphosate addition to soils could be beneficial for the environment due to the enhanced bioNER formation, while P & glyphosate application disadvantageous since it promoted xenoNER formation.


Assuntos
Herbicidas , Nitratos , Poluentes do Solo , 60658 , Fertilizantes , Solo/química , Herbicidas/química , Nitrogênio , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Sarcosina , Glicina/metabolismo , Poluentes do Solo/análise
12.
Eur J Neurosci ; 59(7): 1500-1518, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38185906

RESUMO

Discrete alcohol cues and contexts are relapse triggers for people with alcohol use disorder exerting particularly powerful control over behaviour when they co-occur. Here, we investigated the neural substrates subserving the capacity for alcohol-associated contexts to elevate responding to an alcohol-predictive conditioned stimulus (CS). Specifically, rats were trained in a distinct 'alcohol context' to respond by entering a fluid port during a discrete auditory CS that predicted the delivery of alcohol and were familiarized with a 'neutral context' wherein alcohol was never available. When conditioned CS responding was tested by presenting the CS without alcohol, we found that augmenting glutamatergic activity in the nucleus accumbens (NAc) shell by microinfusing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) reduced responding to an alcohol CS in an alcohol, but not neutral, context. Further, AMPA microinfusion robustly affected behaviour, attenuating the number, duration and latency of CS responses selectively in the alcohol context. Although dopaminergic inputs to the NAc shell were previously shown to be necessary for CS responding in an alcohol context, here, chemogenetic excitation of ventral tegmental area (VTA) dopamine neurons and their inputs to the NAc shell did not affect CS responding. Critically, chemogenetic excitation of VTA dopamine neurons affected feeding behaviour and elevated c-fos immunoreactivity in the VTA and NAc shell, validating the chemogenetic approach. These findings enrich our understanding of the substrates underlying Pavlovian responding for alcohol and reveal that the capacity for contexts to modulate responding to discrete alcohol cues is delicately underpinned by the NAc shell.


Assuntos
Sinais (Psicologia) , Núcleo Accumbens , Humanos , Ratos , Animais , Núcleo Accumbens/fisiologia , Ratos Long-Evans , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Etanol/farmacologia , Condicionamento Operante/fisiologia
13.
J Neurosci ; 44(6)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38169457

RESUMO

It is well established that, during neural circuit development, glutamatergic synapses become strengthened via NMDA receptor (NMDAR)-dependent upregulation of AMPA receptor (AMPAR)-mediated currents. In addition, however, it is known that the neuromodulator serotonin is present throughout most regions of the vertebrate brain while synapses are forming and being shaped by activity-dependent processes. This suggests that serotonin may modulate or contribute to these processes. Here, we investigate the role of serotonin in the developing retinotectal projection of the Xenopus tadpole. We altered endogenous serotonin transmission in stage 48/49 (∼10-21 days postfertilization) Xenopus tadpoles and then carried out a set of whole-cell electrophysiological recordings from tectal neurons to assess retinotectal synaptic transmission. Because tadpole sex is indeterminate at these early stages of development, experimental groups were composed of randomly chosen tadpoles. We found that pharmacologically enhancing and reducing serotonin transmission for 24 h up- and downregulates, respectively, AMPAR-mediated currents at individual retinotectal synapses. Inhibiting 5-HT2 receptors also significantly weakened AMPAR-mediated currents and abolished the synapse strengthening effect seen with enhanced serotonin transmission, indicating a 5-HT2 receptor-dependent effect. We also determine that the serotonin-dependent upregulation of synaptic AMPAR currents was mediated via an NMDAR-independent, PI3K-dependent mechanism. Altogether, these findings indicate that serotonin regulates AMPAR currents at developing synapses independent of NMDA transmission, which may explain its role as an enabler of activity-dependent plasticity.


Assuntos
Fosfatidilinositol 3-Quinases , Serotonina , Sinapses/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de AMPA/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico
14.
J Neurosci ; 44(8)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38228367

RESUMO

Subconcussive head impacts are associated with the development of acute and chronic cognitive deficits. We recently reported that high-frequency head impact (HFHI) causes chronic cognitive deficits in mice through synaptic changes. To better understand the mechanisms underlying HFHI-induced memory decline, we used TRAP2/Ai32 transgenic mice to enable visualization and manipulation of memory engrams. We labeled the fear memory engram in male and female mice exposed to an aversive experience and subjected them to sham or HFHI. Upon subsequent exposure to natural memory recall cues, sham, but not HFHI, mice successfully retrieved fearful memories. In sham mice the hippocampal engram neurons exhibited synaptic plasticity, evident in amplified AMPA:NMDA ratio, enhanced AMPA-weighted tau, and increased dendritic spine volume compared with nonengram neurons. In contrast, although HFHI mice retained a comparable number of hippocampal engram neurons, these neurons did not undergo synaptic plasticity. This lack of plasticity coincided with impaired activation of the engram network, leading to retrograde amnesia in HFHI mice. We validated that the memory deficits induced by HFHI stem from synaptic plasticity impairments by artificially activating the engram using optogenetics and found that stimulated memory recall was identical in both sham and HFHI mice. Our work shows that chronic cognitive impairment after HFHI is a result of deficiencies in synaptic plasticity instead of a loss in neuronal infrastructure, and we can reinstate a forgotten memory in the amnestic brain by stimulating the memory engram. Targeting synaptic plasticity may have therapeutic potential for treating memory impairments caused by repeated head impacts.


Assuntos
Amnésia , Memória , Masculino , Camundongos , Feminino , Animais , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Hipocampo/fisiologia , Camundongos Transgênicos
15.
Environ Res ; 246: 118114, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211716

RESUMO

INTRODUCTION: N-(phosphonomethyl)glycine, or glyphosate, is a non-selective systemic herbicide widely used in agricultural, industrial, and residential settings since 1974. Glyphosate exposure has been inconsistently linked to neurotoxicity in animals, and studies of effects of gestational exposure among humans are scarce. In this study we investigated relationships between prenatal urinary glyphosate analytes and early childhood neurodevelopment. METHODS: Mother-child pairs from the PROTECT-CRECE birth cohort in Puerto Rico with measures for both maternal urinary glyphosate analytes and child neurodevelopment were included for analysis (n = 143). Spot urine samples were collected 1-3 times throughout pregnancy and analyzed for glyphosate and aminomethylphosphonic acid (AMPA), an environmental degradant of glyphosate. Child neurodevelopment was assessed at 6, 12, and 24 months using the Battelle Developmental Inventory, 2nd edition Spanish (BDI-2), which provides scores for adaptive, personal-social, communication, motor, and cognitive domains. We used multivariable linear regression to examine associations between the geometric mean of maternal urinary glyphosate analytes across pregnancy and BDI-2 scores at each follow-up. Results were expressed as percent change in BDI-2 score per interquartile range increase in exposure. RESULTS: Prenatal AMPA concentrations were negatively associated with communication domain at 12 months (%change = -5.32; 95%CI: 9.04, -1.61; p = 0.007), and communication subdomain scores at 12 and 24 months. At 24 months, four BDI-2 domains were associated with AMPA: adaptive (%change = -3.15; 95%CI: 6.05, -0.25; p = 0.038), personal-social (%change = -4.37; 95%CI: 7.48, -1.26; p = 0.008), communication (%change = -7.00; 95%CI: 11.75, -2.26; p = 0.005), and cognitive (%change = -4.02; 95%CI: 6.72, -1.32; p = 0.005). Similar trends were observed with GLY concentrations, but most confidence intervals include zero. We found no significant associations at 6 months. CONCLUSIONS: Our results suggest that gestational exposure to glyphosate is associated with adverse early neurodevelopment, with more pronounced delays at 24 months. Given glyphosate's wide usage, further investigation into the impact of gestational glyphosate exposure on neurodevelopment is warranted.


Assuntos
Coorte de Nascimento , 60658 , Gravidez , Feminino , Humanos , Pré-Escolar , Porto Rico , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Glicina/toxicidade , Glicina/urina
16.
Neurobiol Learn Mem ; 208: 107892, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38242226

RESUMO

Behavioral flexibility, one of the core executive functions of the brain, has been shown to be an essential skill for survival across species. Corticostriatal circuits play a critical role in mediating behavioral flexibility. The molecular mechanisms underlying these processes are still unclear. Here, we measured how synaptic glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and N-methyl-D-aspartic acid receptor (NMDAR) expression dynamically changed during specific stages of learning and reversal. Following training to well-established stages of discrimination and reversal learning on a touchscreen visual task, lateral orbitofrontal cortex (OFC), dorsal striatum (dS) as well as medial prefrontal cortex (mPFC), basolateral amygdala (BLA) and piriform cortex (Pir) were micro dissected from male mouse brain and the expression of glutamatergic receptor subunits in the synaptic fraction were measured via immunoblotting. We found that the GluN2B subunit of NMDAR in the OFC remained stable during initial discrimination learning but significantly increased in the synaptic fraction during mid-reversal stages, the period during which the OFC has been shown to play a critical role in updating outcome expectancies. In contrast, both GluA1 and GluA2 subunits of the AMPAR significantly increased in the dS synaptic fraction as new associations were learned late in reversal. Expression of NMDAR and AMPAR subunits did not significantly differ across learning stages in any other brain region. Together, these findings further support the involvement of OFC-dS circuits in moderating well-learned associations and flexible behavior and suggest that dynamic synaptic expression of NMDAR and AMPAR in these circuits may play a role in mediating efficient learning during discrimination and the ability to update previously learned associations as environmental contingencies change.


Assuntos
Córtex Pré-Frontal , Reversão de Aprendizagem , Camundongos , Masculino , Animais , Reversão de Aprendizagem/fisiologia , Córtex Pré-Frontal/fisiologia , Aprendizagem por Discriminação/fisiologia , Encéfalo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Proteínas de Transporte
17.
Water Res ; 250: 121021, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38218047

RESUMO

Glyphosate (GLY) is the most commonly used herbicide worldwide, and aminomethylphosphonic acid (AMPA) is one of its main metabolites. GLY and AMPA are toxic to humans, and their complex physicochemical properties present challenges in their removal from water. Several technologies have been applied to remove GLY and AMPA such as adsorption, filtration, and degradation with varied efficiencies. In previous works, an ultrafiltration membrane with permeate-side polymer-based spherical activated carbon (UF-PBSAC) showed the feasibility of removing uncharged micropollutants via adsorption in a flow-through configuration. The same UF-PBSAC was investigated for GLY and AMPA adsorption to assess the removal of charged and lower molecular weight micropollutants. The results indicated that both surface area and hydraulic residence time were limiting factors in GLY/AMPA adsorption by UF-PBSAC. The higher external surface of PBSAC with strong affinity for GLY and AMPA showed higher removal in a dynamic process where the hydraulic residence time was short (tens of seconds). Extending hydraulic residence times (hundreds of seconds) resulted in higher GLY/AMPA removal by allowing GLY/AMPA to diffuse into the PBSAC pores and reach more surfaces. Enhancement was achieved by minimising both limiting factors (external surface and hydraulic residence time) with a low flux of 25 L/m2.h, increased PBSAC layer of 6 mm, and small PBSAC particle size of 78 µm. With this configuration, UF-PBSAC could remove 98 % of GLY and 95 % of AMPA from an initial concentration of 1000 ng/L at pH 8.2 ± 0.2 and meet European Union (EU) regulation for herbicides (100 ng/L for individuals and 500 ng/L for total herbicides). The results implied that UF-PBSAC was able to remove charged micropollutants to the required levels and had potential for application in wastewater treatment and water reuse.


Assuntos
Herbicidas , Organofosfonatos , Purificação da Água , Humanos , 60658 , Ultrafiltração/métodos , Carvão Vegetal/química , Polímeros , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Água , Purificação da Água/métodos
18.
Microbiol Res ; 280: 127600, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211497

RESUMO

Aminophosphonates, like glyphosate (GS) or metal chelators such as ethylenediaminetetra(methylenephosphonic acid) (EDTMP), are released on a large scale worldwide. Here, we have characterized a bacterial strain capable of degrading synthetic aminophosphonates. The strain was isolated from LC/MS standard solution. Genome sequencing indicated that the strain belongs to the genus Ochrobactrum. Whole-genome classification using pyANI software to compute a pairwise ANI and other metrics between Brucella assemblies and Ochrobactrum contigs revealed that the bacterial strain is designated as Ochrobactrum sp. BTU1. Degradation batch tests with Ochrobactrum sp. BTU1 and the selected aminophosphonates GS, EDTMP, aminomethylphosphonic acid (AMPA), iminodi(methylene-phosphonic) (IDMP) and ethylaminobis(methylenephosphonic) acid (EABMP) showed that the strain can use all phosphonates as sole phosphorus source during phosphorus starvation. The highest growth rate was achieved with AMPA, while EDTMP and GS were least supportive for growth. Proteome analysis revealed that GS degradation is promoted by C-P lyase via the sarcosine pathway, i.e., initial cleavage at the C-P bond. We also identified C-P lyase to be responsible for degradation of EDTMP, EABMP, IDMP and AMPA. However, the identification of the metabolite ethylenediaminetri(methylenephosphonic acid) via LC/MS analysis in the test medium during EDTMP degradation indicates a different initial cleavage step as compared to GS. For EDTMP, it is evident that the initial cleavage occurs at the C-N bond. The detection of different key enzymes at regulated levels, form the bacterial proteoms during EDTMP exposure, further supports this finding. This study illustrates that widely used and structurally more complex aminophosphonates can be degraded by Ochrobactrum sp. BTU1 via the well-known degradation pathways but with different initial cleavage strategy compared to GS.


Assuntos
Ochrobactrum , Organofosfonatos , Fentermina/análogos & derivados , Ochrobactrum/genética , Ochrobactrum/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , Biodegradação Ambiental , 60658 , Organofosfonatos/metabolismo , Fósforo/metabolismo
19.
PLoS One ; 19(1): e0294354, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38241230

RESUMO

Environmental enrichment (EE) through combination of social and non-biological stimuli enhances activity-dependent synaptic plasticity and improves behavioural performance. Our earlier studies have suggested that EE resilience the stress induced depression/ anxiety-like behaviour in Indian field mice Mus booduga. This study was designed to test whether EE reverses the social isolation (SI) induced effect and improve memory. Field-caught mice M. booduga were subjected to behaviour test (Direct wild, DW), remaining animals were housed under SI for ten days and then housed for short-term at standard condition (STSC)/ long-term at standard condition (LTSC) or as group in EE cage. Subsequently, we have examined reference, working memory and expression of genes associated with synaptic plasticity. Our analysis have shown that EE reversed SI induced impairment in reference, working memory and other accompanied changes i.e. increased level of Intersectin 1 (ITSN1), Huntingtin (Htt), Synaptotagmin -IV (SYT4), variants of brain-derived neurotrophic factor (Bdnf - III), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (GluR1) expression, and decreased variants of Bdnf (IV), BDNF, Reelin, Apolipoprotein E receptor 2 (ApoER2), very low-density lipoprotein receptor (VLDLR), Src family tyrosine kinase (SFKs), Disabled protein (Dab)-1, Protein kinase B (PKB/Akt), GluR2, Mitogen-activated protein kinase (MAPK) and Extracellular signal-regulated kinase (ERK1/2) expression. In addition, SI induced reduction in BDNF expressing neurons in dentate gyrus of hippocampus reversed by EE. Further, we found that SI decreases small neuro-active molecules such as Benzenedicarboxylic acid, and increases 2-Pregnene in the hippocampus and feces reversed by EE. Overall, this study demonstrated that EE is effectively reversed the SI induced memory impairment by potentially regulating the molecules associated with the ITSN1-Reelin-AMPA receptor pathway to increase synaptic plasticity.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Fator Neurotrófico Derivado do Encéfalo , Receptores de AMPA , Camundongos , Animais , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptores de AMPA/metabolismo , Hipocampo/metabolismo , Transdução de Sinais , Isolamento Social
20.
Anal Bioanal Chem ; 416(7): 1561-1570, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38285227

RESUMO

The abuse of herbicides has emerged as a great threat to food security. Herein, a low-background interference detection method based on UPLC-MS was developed for the simultaneous determination of glufosinate, glyphosate, and its metabolite aminomethylphosphonic acid (AMPA) in foods. Initially, this study proposed a simple and rapid pretreatment method, utilizing water extraction and PRiME HLB purification to isolate glyphosate, glufosinate, and AMPA from food samples. After the optimization of pretreatment conditions, the processed samples are then analyzed directly by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS) without pre-column derivatization. The method can effectively reduce interference from by-products of pre-column derivatization and background substrates of food sample, showing low matrix effects (ME) ranging from - 24.83 to 32.10%. Subsequently, the method has been validated by 13 kinds of food samples. The recoveries of the three herbicides in the food samples range from 84.2 to 115.6%. The limit of detection (LOD) is lower to 0.073 mg/kg, 0.017 mg/kg, and 0.037 mg/kg, respectively. Moreover, the method shows an excellent reproducibility with relative standard deviations (RSD) within 16.9%. Thus, the method can provide high trueness, reproducibility, sensitivity, and interference-free detection to ensure human health safety.


Assuntos
Aminobutiratos , 60658 , Herbicidas , Organofosfonatos , Humanos , Cromatografia Líquida/métodos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Glicina , 60705 , Espectrometria de Massas em Tandem/métodos , Reprodutibilidade dos Testes , Herbicidas/análise , Cromatografia Líquida de Alta Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...